Tremila metri sotto il Sudafrica, alla ricerca dell’ultimo grammo d’oro

L’oro: il metallo più prezioso nell’immaginario collettivo, sebbene ve ne siano di più rari, utili o funzionali a far fruttare un investimento. Lo sanno fin troppo bene, loro. Ma c’è un fascino immutabile, in ciò che può essere facilmente plasmato eppure non subisce gli effetti del tempo, non viene corroso, né subisce variazioni quantitative durante il riutilizzo successivamente alla fusione. A patto, s’intende, di potersi fidare di colui che lo lavora. Un tesoro assai più raro di quanto saremmo comunemente indotti a pensare, soprattutto rispetto a materiali facilmente estraibili come i diamanti, laddove tale oggetto del desiderio si trova in natura normalmente associato ai filoni di quarzo, tra le rocce ignee e metamorfiche che furono infiltrate dall’acqua di antichi oceani ormai rimasti privi di un nome. E in un mondo in cui per secoli e millenni plurime generazioni di minatori hanno passato una vita con in mano gli strumenti del mestiere, alla ricerca di un difficile sentiero verso l’arricchimento personale, sembrerà talvolta che ogni ultima possibilità sia stata sfruttata, qualsiasi vena a cui l’uomo potesse accedere dietro un investimento di risorse ragionevole sia andata incontro all’esaurimento. Benché l’opera dei nostri progenitori, di suo conto, non sia priva di effettivi lasciti, oltre a quelli intangibili che pesano sulla cultura e l’economia; così che dov’essi avevano scavato, i loro figli hanno continuato a farlo, e così i nipoti. Fino alla creazione, tra gli altri, di un caso estremo come i West Wits, il campo minerario situato a poca distanza dalla città sudafricana di Johannesburg dove hanno luogo alcune delle miniere più profonde al mondo.
Con nomi come Mponeng (“Guardami”) e TauTona (“Il Grande Leone”) nelle lingue delle antiche popolazioni locali, a cui tali depositi erano già noti, sebbene fossero in origine decisamente più accessibili da parte di opere estrattive a conduzione poco più che familiare. Prima che qui giungessero i macchinari e le maestranze della Ashanti Corporation, fondata in Ghana nel 1897 e destinata a diventare nel giro di pochi anni una delle compagnie estrattive più influenti e ricche al mondo, fino alla fusione, destinata a compiersi oltre un secolo dopo, con la AngloGold per una resa annuale misurabile in milioni di miliardi, visto come basti effettivamente estrarre 0,35 once da un’intera tonnellata di roccia, per poter riuscire a generare un profitto. Non c’è molto da sorprendersi, dunque, se lo scavo in questi luoghi fu condotto senza nessun tipo di risparmio, verso l’ottenimento di quelle che possiamo oggi definire, senza dubbio alcuno, le voragini più profonde mai scavate dall’uomo. Fatta eccezione per l’esperimento del foro di Kula o altri tentativi di trivellazione per scopi scientifici, comunque tanto stretti da non permettere la discesa da parte degli umani. Mentre le miniere sudafricane, di contro, riescono ad ospitare delle vere e proprie città dove non batte la luce del sole, con i loro governanti, mezzi di trasporto e regole completamente diverse da quelle della superficie . É perciò un mondo inaccessibile nonché crudele, quello descritto nei brevi e occasionali articoli scritti sull’argomento sulle testate internazionali, che parlano di tunnel da temperature superiori ai 60 gradi che richiedono l’impiego costante di speciali impianti di raffreddamento e i cosiddetti “minatori fantasma”, uomini disperati, spesso armati fino ai denti con fucili a ripetizione e granate incendiarie fatte in casa, che si nascondono in sezioni ormai chiuse della miniera, spesso con il beneplacito o l’impotenza dei lavoranti legittimi, per accumulare piccole ma significative quantità del desiderabile pegno di opulenza creato dalla natura. Al fine di condurlo a distanza di settimane o mesi, a patto che riescano a sopravvivere ai gas venefici e il costante rischio d’incendi, nelle spietate grinfie dei loro mandanti e padroni. Mentre l’opera di scavo inarrestabile continua, all’inseguimento di un tesoro spesso misurabile in pochi centimetri di giacimento, la coda ormai distante delle antiche sale di una mitica Eldorado africana…

Leggi ancora

L’improbabile realtà di un vetro radioattivo

Nella sua forma basilare il vetro, materiale solido che tuttavia presenta le caratteristiche di un liquido, è il prodotto della fusione e successiva cristallizzazione di sabbia, silicio o altri silicati, occasionalmente fatti galleggiare sopra un letto di stagno per garantirne la levigatezza opportuna. Ciò consente di disporre, nella maggior parte delle situazioni, di un qualcosa che risulti essere del tutto trasparente, soluzione idonea per finestre, specchi o altri simili implementi. Ma che dire di chi cerchi, nelle proprie circostanze operative, un oggetto finale che risulti essere dotato di un colore? Suppellettile o perfetto soprammobile, differenziato dai prodotti circostanti per la sua capacità di assorbire, almeno in parte, la luce… Un risultato che può essere raggiunto in un singolo modo: l’uso pratico, ed attentamente calibrato, di una certa quantità di metallo. Polvere alla polvere, di borosilicati, ed ossido potente da inserire nella mescola della giornata; tutto questo in base a una ricetta che deriva dai recessi del Mondo Antico. E in effetti tra i ritrovamenti archeologici effettuati a Posillipo, coerenti all’eruzione del Vesuvio del 79 d.C, sono stati ritrovati dei mosaici composti parzialmente in vetro, la cui colorazione risultava essere di un pallido verde oliva. La cui analisi più approfondita avrebbe dato un valido riscontro, di quanto mai, nessuno, avrebbe teso a sospettare: il contenuto, lieve ma presente, di una polvere d’uranio. Materiale radioattivo per eccellenza!
Di sicuro non il più pericoloso. E del resto fino alla sua attivazione, durante i processi che condussero alla produzione moderna dell’energia nucleare, sufficientemente inerte da essere maneggiato senza eccessivi rischi per la salute. Come sarebbe ritornato in voga d’altra parte quasi due millenni dopo, con la produzione americana di quello che sarebbe stato chiamato coerentemente jadeite glass o “vetro di vaselina”, dall’appellativo commerciale di un petrolato venduto al tempo dalla stessa tonalità cromatica, o con senno di poi storiografico direttamente vetro [dell’epoca] della grande depressione. Caratterizzato da una proprietà piuttosto interessante: la propensione ad accendersi di luce riflessa e brillare pressoché istantaneamente, con una fosforescenza naturale particolarmente sensibile alla luce ultravioletta. Vasi, candelabri, lampadari… Ma anche piatti e bicchieri, dimostrando la pressoché totale indifferenza al potenziale insalubre di quanto, dopo tutto, veniva ancora considerato un materiale come tanti altri. Successivamente alla seconda guerra mondiale ed in particolare a seguito del progetto Manhattan per la creazione della prima bomba atomica, dunque, la situazione sarebbe radicalmente cambiata, cambiando dapprima la disponibilità e quindi la concezione collettiva di tale materiale, causando l’istantanea e totale sparizione di simili oggetti dal mercato della produzione corrente. Ragion per cui, sebbene dotati di un pregio di lavorazione trascurabile, tali testimonianze di uno strano passato vengono oggi mantenute in elevata considerazione dai collezionisti, disposti a pagare una ragionevole quantità di dollari per aggiungere un altro pezzo di simil-criptonite alla loro collezione di bric-à-brac.
Il tipico prodotto di vetro all’uranio, del resto, ne contiene una quantità non superiore al 10-15%, generalmente incapace di emettere radiazioni superiori a quelle già contenute dal corpo umano. Sebbene esistano delle eccezioni e ad ogni modo, lo stesso metodo impiegato per dare forma ad uno di questi oggetti risulti essere piuttosto impressionante e per quanto ci è dato di comprendere, potenzialmente pericoloso…

Leggi ancora

L’unica “mucca” che genera isotopi radioattivi a comando

L’aspetto tangibile di un bovino non comporta in genere l’utilizzo di un barattolo trasparente al fine di contenere l’intero animale, a meno che il defunto mammifero non sia recentemente passato per un forno crematorio fuoriuscendo dal quale, per quanto ci è permesso di capire, sarebbe alquanto infruttuoso sottoporlo a un comune processo di mungitura. Ma neanche questo specifico isotopo del torio, a voler essere sinceri, uno dei più comuni elementi radioattivi nonché il principale carburante utilizzato nei moderni generatori nucleari, si presenta il più delle volte come un fluido indistinguibile dall’acqua, tanto risulta liquido e trasparente. Certo: qui siamo nel regno dell’avveniristico e del possibile, ovvero tra le alte mura dell’Oak Ridge Laboratory dell’Università del Tennessee. Un luogo che sta agli scienziati che s’interessano di energia atomica, come le riconoscibili rocce del parco di Vasquez in California per i cinefili, comparse in innumerevoli pellicole di fantascienza a partire dal celebre episodio di Star Trek. E c’è una sorta di paradossale equilibrio, nel trovarci proprio qui, dove venne condotto fino alle sue più terribili conseguenze il progetto Manhattan per la costruzione della prima bomba atomica, ad osservare un processo il cui scopo è diametralmente opposto: prolungare, per quanto possibile, la vita delle persone.
In un potenziale Purgatorio di radiazioni che tuttavia conduce al Paradiso, all’interno del quale il nostro traghettatore, ancora una volta, è niente meno che il Prof. Poliakoff, lo spettinato chimico dell’Università di Nottingham che gestisce l’incredibile serie divulgativa The Periodic Table of Videos, uno degli angoli più scientificamente interessanti di tutta YouTube. E si capisce ben presto che il suo fanciullesco entusiasmo, stavolta, appare quanto mai giustificato: la “mucca” del torio è dopo tutto, un processo che potremmo arrivare a definire quasi miracoloso nella cura che potrebbe un giorno offrirci nei confronti della più grave e incurabile afflizione del mondo moderno: il cancro che attacca i tessuti umani. Il sistema ruota attorno, per entrare nel vivo della questione, a una terapia sperimentale sottoposta a trial clinici con risultati notevoli negli ultimi tre anni, che consiste nell’effettuare la radioterapia con un materiale particolarmente raro e in conseguenza di questo, prezioso: l’actinium-225, presente in natura nella quantità di circa 0,2 milligrammi per ogni tonnellata del già costoso uranio. Questo specifico isotopo, che prende il nome dal termine greco che vuol dire “splendore” (ακτίς) proprio perché per tutto il corso della sua mezza-vita di appena 10 giorni emette un tenue lucore azzurro, possiede infatti la capacità di emettere il tipo di particelle radioattive classificate con la lettera alfa, nei fatti composte da due protoni e altrettanti neutroni. Per un peso complessivo in grado di renderle assai meno volatili e nel contempo, molto più efficaci nell’attaccare ogni tipo di cellula, incluse quelle colpite dalla mutazione potenzialmente letale del cancro. Ecco dunque per sommi capi, come funziona la cura: si prende un particolare anticorpo o una proteina, creati in laboratorio per attaccare lo specifico tipo di malattia del paziente, quindi lo si abbina al potente actinium, che per i processi organici del corpo viene portato proprio nel punto dove se ne ha maggiormente bisogno. Quindi nel corso dei pochi giorni attraverso cui quest’ultimo si dissolve, il cancro viene letteralmente bombardato dalle particelle alfa e si spera, in conseguenza di questo, costretto ad arretrare…Se non addirittura debellato.
Ma la domanda effettivamente da porsi è: in quale maniera è stato possibile sottoporre circa 100 pazienti l’anno a questo complessa terapia almeno a partire dal 2016, se l’actinium-225 continua ad essere una delle sostanze più rare della Terra? La risposta, come potrete facilmente immaginare giunti a questo punto, è nella mungitura condotta diligentemente ogni giorno (o quasi) da alcuni dei più precisi tecnici del laboratorio di Oak Ridge…

Leggi ancora

Fuoco e fiamme del martello che pulisce i crogioli da fonderia




Diffusa è la percezione pubblica che per quanto concerne gli strumenti da percussione, nessuno possa superare il mitico martello del dio Thor. Il cui rombo è quello della tempesta, mentre incontra il tipo di superficie che suo malgrado, fa il possibile per contrapporsi al libero passaggio di una massa tanto solida e devastante. Andando incontro alla frantumazione sistematica, nonché totale. Ma la verità dei fatti, a ben pensarci, è che l’arma meno utile di questo mondo è proprio quella che può essere impugnata da un individuo soltanto: poiché una volta assolta alla necessità fondamentale, di annientare le forze del percepito male, ciò che si troverà a lasciare irrisolti sono i compiti per così dire più prosaici, quei mestieri e quei doveri che pur non venendo ammirati convenzionalmente dagli autori di fumetti o altre forme di mitologia moderna, permettono in qualche maniera al mondo di continuare le sue rotazioni attraverso il cosmo del presente e del futuro. È forse proprio per questo, che ad oggi il mondo può contare sull’aiuto del Fractum (modelli: 80, 100, 200 e 250) concepiti per essere utilizzati con una gru o carrello elevatore di tipo assolutamente convenzionale, da parte di chiunque possa averne l’interesse o la necessità. Il che si riferisce, nella maggior parte dei casi, agli operai più fortunati di quel tipo di fabbrica metallurgica, la quale ricevendo grandi carichi dalle miniere prossime o lontane, inizia quel processo di trasformazione che conduce, senza falla, alla materia prima. Ferro, per così dire, ma anche piombo, zinco, alluminio, rame, argento, oro, vanadio, tantalite/vermiculite… Tutto quello, insomma che fuoriuscendo dalle viscere della Terra, necessita generalmente di un preciso processo di raffinazione, per separare il buono dal cattivo, l’utile dall’inutile, il significativo dal collaterale. In altri termini, buttare tutto in pentola, per dare inizio alla cottura.
Chiunque abbia mai avuto modo di osservare, anche a distanza, il processo usato al fine di processare il minerale grezzo a caldo, conosce la sua somiglianza alla ricetta tipica del chili messicano: si prende l’agglomerato minerario contenente una variabile percentuale del tesoro da noi ricercato, quindi lo si inserisce all’interno di una pentola (crogiolo) portata rapidamente a temperatura di fusione. All’interno di quel brodo risultante, senza alcuna esitazione, viene quindi aggiunto l’ingrediente segreto, sostanzialmente una miscela di sostanze scelte per la loro capacità di ossidare i legami cristallini tra i diversi tipi di metalli o pietra. Con un poderoso rimescolamento, a questo punto, il metallo ragionevolmente puro può essere rovesciato in altri recipienti, verso i successivi passaggi della sua processazione. Mentre ciò che rimane all’interno del magico pentolone, creando una serie di problematiche largamente note, è il cosiddetto slag, il “brodo” delle scorie, mescolanza vetrosa di ossidi e silicio parzialmente solidificati con una forma cava convenzionalmente associata in lingua inglese al concetto di un “cranio”. La cui rimozione (deskulling) il più delle volte, risulta essere di un’estrema semplicità: basta rovesciarlo a terra. Ed è lì che iniziano le grane, quelle vere…
Un teschio da forgia, per quanto possiamo desumere da video dimostrativi come quello qui sopra riportato, assume l’aspetto di un ammasso scuro e solido, del tutto inamovibile e tremendamente pericoloso. Questo perché al suo interno, per molte ore dopo il termine della lavorazione, il calor rosso continua ad ardere con temperature che possono raggiungere facilmente le svariate migliaia di gradi. Il che, nel tipo di stabilimento che può arrivare a produrne svariate dozzine l’ora, non può che causare un senso spontaneo di fastidio e rabbia. E come dice il celebre proverbio: “La rabbia non fa bene a Hulk!” Energumeno color smeraldo dalla nota e comprensibile incapacità di sollevare il succitato martello (dopo tutto, restava pur sempre “magico”). Non che ne avesse in alcun modo bisogno, per frantumare tutto ciò che avesse l’arroganza d’interporsi sul suo sentiero!

Leggi ancora

1 2 3 7