Il canto del vapore nell’ultima segheria tradizionale americana

Ah, i suoni rilassanti della foresta californiana in una tersa mattinata autunnale! Il canto armonioso del blue jay o ghiandaia azzurra americana, che si accompagna al lieve stormire delle fronde alla brezza proveniente dal Pacifico distante. L’assordante muggito del wapiti di Roosevelt in amore, che soverchia il motore di automobili distanti. Il ringhio lamentoso delle linci intente a definire i limiti del proprio territorio, a costo di provare le unghie sopra il pelo e sulla pelle dei propri simili apparentemente confusi. E un fischio sibilante, accompagnato dal fragore, dal tuono e il rombo e il fuoco del vulcano, proveniente dal complesso di edifici che ormai da oltre un secolo è presente, ad est della città di Redding, non troppo lontano dall’ufficio postale di Oak Run Road. Nell’area stranamente priva di alberi, situata tra le due macchie boschive (entrambe patrimonio Nazionale) di Shasta-Trinity e Lassen. Ove l’uomo intento a manovrare quelle leve ha imposto la sua legge, prelevando quanto necessario a…
Già, gli Stati Uniti occidentali! Terra d’oro e cercatori di quest’Ultimo, solennemente intenti a procacciare i presupposti della propria fama di ricchezza sin dal tempo delle origini, soltanto successivamente sostituiti da coloro che aspiravano alle luci di Hollywood e un altro tipo di vendetta contro il fato. Caso vuole, d’altra parte, che un diverso tipo di ricchezza naturale fosse posta, almeno in parte, sotto il suolo di una terra tanto fortunata. E con questo intendo, le propaggini delle radici, di quegli alberi di sicomoro e pioppo e frassino, il pino grigio e l’ontano, l’ippocastano e vari salici piangenti. Che pur non raggiungendo le vertiginose quote delle altissime sequoie sulla costa, potevano dar vita a un’ampia varietà di materiali nel campo edilizio, giungendo a offrire basi per un certo tipo di ricchezza ed una lunga saga familiare.
Sto parlando, tanto per venire al punto, di Ed Phillips e i suoi discendenti. L’uomo che verso la fine del XIX secolo, ragazzo poco meno che ventenne, capì che avrebbe realizzato il proprio sogno di bambino, costruendo e governando le complesse operazioni di una grande segheria. Concetto ben diverso, quest’ultimo, da quello che potremmo immaginare al giorno d’oggi: fatto di possenti macchinari ed imponenti ruote ad acqua, interconnesse tra di loro e collegate, tramite rudimentali trasmissioni e rulli di metallo, a una serie per allora avveniristica di seghe circolari. Quelle acquistate, grazie al patrimonio della sua famiglia attiva sino a quel momento in campo metallurgico, direttamente dall’attività della vicina Myers Mill, attività prossima al fallimento per una serie di sfortunate casistiche e probabile cattiva gestione. Così fu attorno 1897-98, per quanto ci è dato di sapere, che Ed con suo fratello Frank diedero inizio ad una simile avventura, lavorando giorno e notte con l’aiuto di attrezzi manuali, una singola ruota di mulino modello Pelton e macchinari fatti funzionare grazie all’energia muscolare degli animali. E tutto sembrò andare per il meglio, almeno fino 1913, quando un improvviso incendio, forse causato dalle lampade a kerosene che i due impiegavano all’interno di edifici costruiti prevalentemente in legno, fu la fine di un così riuscito esperimento. Erano gli anni antecedenti alla prima guerra mondiale, questi, ed un nuova pervasiva tecnologia si stava palesando ad ogni livello della società americana. Così al capostipite di tale impresa, ormai rimasto solo in famiglia, venne la geniale idea: perché non ricostruire la segheria Phillips, con le stesse modalità di un vero e proprio treno a vapore? Inclusa quella, particolarmente inaspettata, di potersi spostare dove “l’Oro” aveva un’altezza solidità migliore…

Leggi tutto

Il bruco artificiale che divora le centrali nucleari

Germania: la patria dei veicoli creati per un singolo, specifico obiettivo, prodotti in egual misura dell’ingegno di una squadra e il bisogno, simile all’evoluzione di esseri viventi, di rispondere allo scopo predeterminato. Ma quanta irritazione e quanto odio, attraverso lunghe decadi d’insopportabile presenza, dev’essersi saputa guadagnare un’imponente ciminiera, per giungere a dar forma al proprio intento con braccia idrauliche, ganasce seghettate ed una ruota ben oliata sopra cui avanzare, sopra il bilico di quel bordo alto 160 metri e così ingannevolmente Sottile… L’orlo superiore del cestino pieno di ottime speranze, acceso per la prima volta nel lontano 1987 e quindi spento, imprevedibilmente, dopo appena 13 mesi d’impiego causa ordine del Tribunale Amministrativo Federale. Per raggiungere un po’ in ritardo le conseguenze più visibili e liberatorie di una simile condanna, implicita ed inevitabile, giusto verso l’inizio dell’agosto 2019. Simbolo, questa centrale un tempo all’avanguardia di Mülheim-Kärlich (terra di Renania-Palatinato, in provincia di Coblenza) del fondamentale ripensamento programmatico di un’intera nazione, nei confronti di quel tipo di energia considerata a lungo come la più pulita, sicura, efficiente e “inesauribile” (ma davvero!) Pur essendo costata, nella fase originale della sua messa in opera, la cifra non indifferente di 7 miliardi di marchi tedeschi, grosso modo equivalenti a 3,5 miliardi di euro. Ma sapete a cosa non può essere attribuito un prezzo? Già, la vita e la sicurezza delle persone. Soprattutto quelle che si trovano all’ombra del vapore frutto di tante e tali barre d’uranio, sufficienti a produrre il quantitativo interessante di 1302 MW ed una volta che si è fatto notare nuovamente come, proprio sotto le sue fondamenta, scorresse il pontenziale magma di un antico vulcano. EPPURE, cosa difficile da trascurare, le norme costruttive anti-sismiche imposte da contratto al consorzio dei finanziatori ed alla RWE AG, principale compagnia energetica della Renania, non sono state pienamente rispettate. Tanto che l’unica direzione in cui era possibile dirigersi era quella di partenza. Per tornare, nuovamente, laboriosamente, al “prato verde” e un cumulo rimosso di grige macerie.
Ora demolire edifici di questa dimensione, svettanti verso il cielo ancor più in alto della cattedrale di Colonia, è già di norma operazione alquanto lunga & complicata. Ma basterà aggiungere all’equazione la presenza di molte tonnellate di materiale radioattivo da smaltire e la problematica vicinanza a infrastrutture di peso, come la vicina linea ferroviaria e stradale K44 che costeggia il fiume dei Nibelunghi, per rendersi conto di trovarsi di fronte ad un’impresa, se possibile, ancor più monumentale ed epica dell’ambizione che ne aveva fatto gettare le fondamenta oltre quattro, significative decadi fa. Tanto che tra tutte le possibili modalità possibili, sarebbe stata scelta la più insolita: iniziare la scalata all’incontrario, per questa volta soltanto, partendo dall’alto…

Leggi tutto

Lo spettacolo pakistano degli tsunami generati a comando

Qualcosa d’enorme sta prendendo forma nel distretto di Pakhtunkhwa, 105 Km a nord-ovest di Islamabad. Nel più assoluto entroterra? L’onda anomala: uno dei più terribili eventi “naturali”. La crescita esponenziale dell’energia implicata dal moto oceanico, a causa di una forza introdotta all’interno di quel sistema, generalmente proveniente dalle viscere stesse del pianeta Terra. Un pugno d’acqua che può abbattersi sulla costa, distruggendo ogni cosa che abbia la grave sfortuna di trovarsi sul suo cammino. Quando l’acqua del mare inizia a ritirarsi oltre la linea del bagnasciuga, segno dell’inizio imminente della fine, nessuna persona informata rimane nei dintorni, ben sapendo che anche pochi metri di elevazione, in determinati casi, possono fare la differenza tra la vita e la morte. E allora che cos’è questo? Svariate decine di persone dietro un parapetto alto si e no mezzo metro, che osservano, commentano e scattano foto a svariate tonnellate d’acqua, spinta innanzi lungo il pendio per l’effetto dell’implacabile forza di gravità. E sembrerebbe di trovarsi dinnanzi a una cascata, se non fosse che nessun flusso naturale, nel corso della storia geologica pregressa, ha mai potuto scorrere per un periodo prolungato con questa potenza, senza che il pendio stesso ne venisse eroso nel giro di poche settimane. Ma il flusso di una simile scena, questo è un fattore fondamentale, non trova espressione continua dinnanzi alle telecamere dei curiosi. Esso inizia all’improvviso, successivamente all’estendersi di una stagione delle piogge. Quindi cessa, con lo stesso tenore repentino, lasciando soltanto il ricordo di una così impressionante deflagrazione. Quasi come se qualcuno tirasse a se una leva. Quasi.
E in effetti non saprei dirvi, se il sistema di controllo della diga di Tarbela larga 2,7 Km sul fiume Indo (maggiore impianto idroelettrico al mondo ed una delle strutture più grandi mai costruite dall’uomo) sia una leva, un pulsante oppure un comando inviato digitalmente, mediante il click del mouse collegato a un potente computer. Mentre sappiamo fin troppo bene, grazie ai rapporti ufficiali inviati alla Banca Mondiale che ne finanziò la costruzione a partire dal 1968, che il suo bacino artificiale di 13,96 chilometri cubici è soggetto ad un riempimento e una non-permeabilità tali che ogni anno, circa il 70% dell’acqua in eccesso deve essere scaricata, nell’unico modo possibile per un simile meccanismo: mediante l’apertura degli stramazzi, o canali ausiliari di sfogo. Vie di fuga per l’acqua paragonabili ai tunnel sotterranei, attraverso cui essa viene comunemente instradata per alimentare le fondamentali turbine, capaci di produrre, all’ultima stima, la quantità notevole di 3.478 MW d’elettricità. Dei quali, alle origini del progetto ne erano stati previsti tre, in aggiunta a ulteriori due impiegati allo scopo d’irrigare i campi della regione. Se non che apparve chiaro, entro pochi anni, che l’apporto idrico generato dai ghiacciai dell’Himalaya nei confronti di questa struttura era semplicemente eccessivo, perché un simile piano bastasse a trarne il massimo beneficio. Ed è questa la ragione per cui, a partire già dal 1970, sono stati iniziati una serie di progetti di ampliamento ed installazione di ulteriori turbine, culminanti nella riconversione del quarto tunnel con finalità idroelettriche ultimato nel 2015, un destino che coinvolgerà anche il quinto ed ultimo negli anni immediatamente a venire. Se mai c’è stata una dimostrazione dei tempi che corrono… L’abbandono pressoché completo dell’antico sistema di auto-sostentamento dei popoli, l’agricoltura, a vantaggio di una più proficua nonché redditizia generazione di una corrente d’atomi, usata per far funzionare televisori e lavastoviglie! Eppur se si osserva l’intera questione con occhio clinico, è impossibile non notarlo: ciascuno tsunami artificialmente indotto nel distretto di Pakhtunkhwa, costituisce uno spreco…

Leggi tutto

Il petrolio è contenuto nelle zampe di cemento della creatura

Un computer non può sbagliare: mai astrazione fu più apprezzata dall’uomo, benché inerentemente soggetta ad una vasta gamma di eccezioni. Talvolta terribili, nelle conseguenze a cui diventa impossibile sottrarsi. Le tre colonne grigiastre spuntavano dall’acqua del Gandsfjord per 6 metri, come altrettanti costole di un colossale dinosauro. Circondate da gru, piattaforme e una piccola flotta di navi da trasporto, tra cui le più grandi apparivano appesantite, a dir poco, da una sovrastruttura dal peso di 57.000 tonnellate, sufficiente ad ospitare comodamente una quantità approssimativa di 200 persone. Era il 23 agosto del 1991, quando il personale della Norwegian Contractors, assolvendo al più importante appalto che fosse mai stato emesso dalla compagnia di bandiera Statoil (oggi Equinor) stava per fare la storia dell’ingegneria marittima e l’edilizia offshore. Lentamente, un centimetro alla volta, l’elemento apparentemente più imponente venne spostato sopra quelli che avrebbero costituito i suoi sostegni per un periodo di almeno 5 decadi a venire, presso il vasto giacimento di petrolio e gas naturale di Sleipner, nel Mare del Nord. Quindi, contrariamente alle più lecite aspettative, non fu quest’ultimo ad essere abbassato, bensì le colonne stesse, come mosse da una forza titanica, a sollevarsi dal fondale marino, entrando in contatto e “raccogliendo” letteralmente il ponte superiore dai suoi portatori di giornata. D’un tratto, ciò che si trovava soltanto a contatto con il fondale iniziò a dover sopportare al tempo stesso l’impressionante peso e la pressione degli abissi a una profondità di 220 metri. Ogni singola persona coinvolta sapeva che quello era il momento supremo della verità e trattenne il fiato, fino a che… Un boato imprevisto, sollevandosi dalle profondità, risuonò fino ai recessi più remoti della costa rocciosa antistante. Quindi un fremito sembrò sollevarsi tra le onde, mentre l’oggetto titanico, improvvisamente, iniziò a piegarsi da un lato. La peggiore delle ipotesi stava per realizzarsi: a causa di un errore nei dati elaborati dal software di calcolo strutturale NASTRAN, concepito originariamente per simulare lo sforzo dei velivoli della NASA al rientro nell’atmosfera terrestre. Così la solidità dei serbatoi di zavorra e sollevamento era stata sottostimata del 47%, provando in maniera drammatica quello che in molti avevano sospettato: il sistema consistente nel costruire piattaforme petrolifere che poggiano su massicce colonne di cemento vuote, non era scalabile in maniera indefinita. Portato a rendere conto di fronte alla commissione della Statoil, tuttavia, il direttore della compagnia responsabile si vide rivolgere piuttosto che l’atteso rimprovero la famosa domanda: “È successo, c’è soltanto un modo di rimediare. Potete costruirne un’altra identica prima dei termini contrattuali?”
Tentare l’impossibile una volta e fallire, nella maggior parte dei casi, viene considerato abbastanza. Ma esistono risultati talmente desiderabili, con margini di guadagno tanto significativi, che lo sprone a perseverare è semplicemente troppo significativo da poter dimenticare l’obiettivo di partenza. Ed è questa, sostanzialmente, la narrativa di fondo del progetto condeep (concrete deep water structure) concepito per la prima volta dall’ingegnere Olav Mo della compagnia Hoeyer-Ellefsen, nell’ormai remoto 1973. Un modo per collocare gigantesche strutture, finalizzate all’estrazione di alcune delle più basilari sostanze della civiltà moderna dell’energia, nei tratti di mare più agitati e pericolosi dell’intero emisfero settentrionale. Grazie al principio di quella che potrebbe essere considerata una pluralità di capsule cave, il cui involucro esterno è una parete di cemento spessa oltre un metro, e la forma paraboloide possa estendersi dal fondale oceanico fino i raggi splendenti dell’astro solare. Sostanzialmente un approccio migliore e più sofisticato del metodo precedentemente impiegato di una torre in metallo, o l’alternativa inerentemente instabile delle piattaforme semi-sommergibili, impiegate nel più tranquillo e marittimo meridione. Che permette di proteggere l’impianto di trivellazione, assieme agli altri macchinari sommersi, dalla furia insistente delle correnti sottomarine, ponendolo all’interno di quelli che possono soltanto essere descritti come dei veri e propri grattacieli sommersi. Uno, tre o quattro a seconda dei casi, poggiati sopra un sistema di ancoraggio al fondale capace di renderli le più imponenti strutture gravitazionali (GBS) ovvero prive di fondamenta che siano mai state costruite. Al verificarsi del disastro della Sleipner A, questo concetto non era certamente nuovo, essendo stato impiegato con successo già dodici volte, in altrettante piattaforme dislocate tra i giacimenti di Beryl, Brent, Frigg, Stratfjord, Gullfaks, Oseberg e Draugen. Sarebbe tuttavia possibile affermare, senza alcun timore d’esagerazione, che il più importante rappresentante di categoria non fosse ancora stato portato a termine, dalla collaborazione di alcune delle più fervide menti ingegneristiche dell’intero settore delle risorse delle prime. Un traguardo che sarebbe stato raggiunto soltanto nel 1995, in quello che sarebbe diventato il più imponente oggetto a portare il nome della più fraintesa creatura mitologica di queste terre, il grosso e talvolta pericoloso Troll.

Leggi tutto

1 5 6 7 8 9 15