In questo preciso istante all’interno del nostro corpo, letterali miliardi di minuscole macchine stanno compiendo il loro lavoro quotidiano, assolvendo alla miriade di compiti richiesti per garantire la nostra sopravvivenza. E nessuno, tra questi, è basilare e importante quanto quello dell’auto-replicazione delle cellule superstiti, allo scopo di sostituire tutta la materia biologica che continuamente muore, si disgrega e finisce per essere riassorbita dalla circolazione sanguigna. Ma cosa fa di un globulo rosso, un globulo rosso? E in quali aspetti differiscono i mattoni componenti l’endotelio dei vasi sanguigni, ad esempio, da quelli usati all’interno del fegato, della milza o dell’intestino? Sono molti anni che cerchiamo di comprenderlo, attraverso osservazioni che vanno ben al di la del microscopio elettronico. Il che è per certi versi sorprendente, quando si considera che ogni cellula viene fornita completa di istruzioni straordinariamente precise. Quelle prodotte dall’interazione del proprio codice unico coi ribosomi e le relative proteine, ovvero la lunga e sottile stringa nel nucleo (circa due metri per ciascuna cellula per due nanometri di larghezza) continuamente replicata, che prende il nome di acido desossiribonucleico, comunemente abbreviata con l’acronimo di DNA. Come gli altri campi di studio che trattano l’infinitamente piccolo, tuttavia, il nostro proposito non specialistico di comprendere ciò di cui stiamo parlando resta condizionato da un fondamentale problema: l’impossibilità di visualizzare attraverso la semplice immaginazione qualcosa di tanto piccolo e complesso. A meno di fare ricorso ad artifici non proprio credibili, per non dire del tutto irreali. Pensate al modello dell’atomo di Bohr, che rappresenta l’unita più nota della materia come una sorta di planetoide, circondato da satelliti/elettroni in continua rotazione…Un’immagine che potrà risultare utile per l’analisi teorica dei fatti. Nessuno, tuttavia, pensa davvero che ogni singolo oggetto nell’universo possa essere composto da un agglomerato plurimo di tali cosmici componenti. E la stessa cosa vale per la visualizzazione convenzionale dei processi alla base della vita, in cui si mostrano, generalmente, maestosi corpi fluttuanti nel vuoto, che si spostano sulla base di un intento preciso e proiettano sapienti appendici, ciascuna delle quali appare deputata a una mansione dall’alto grado di specificità. Quando invece, parlando di strutture tanto minuscole, è letteralmente impossibile immaginare che un qualsiasi processo possa riuscire a compiersi, a meno che sia letteralmente impossibile il contrario.
Ecco allora l’intento dell’autore di questo fenomenale video, l’animatore e grafico Drew Berry dell’Istituto di Ricerca Walter and Eliza Hall di Melbourne, Australia: mostrare, per una volta, le cose come potrebbero effettivamente essere e non come vorremmo che fossero, per questioni di mera chiarezza. Il che sorprendentemente richiede, persino all’attuale stato avanzato della ricerca scientifica, un notevole grado d’immaginazione. Il fatto è che tutto ciò che avviene all’interno delle cellule è l’esatto contrario della precisa catena di montaggio mostrata in tutti i libri di biologia, i documentari televisivi e alcuni cartoni animati didattici come Esplorando il Corpo Umano (1989) o l’attuale anime giapponese Hataraku saibou! (はたらく細胞 – Cellule al lavoro) ma un letterale marasma di particelle infinitesimali, che interagiscono scontrandosi tra loro e molto spesso, si distruggono spietatamente a vicenda. Il montaggio di poco più di 7 minuti, pubblicato online in occasione della nuova mostra del Victoria & Albert di Londra, contiene alcune delle sequenze più famose dell’autore, chiamato nel 2010 dal New York Times niente meno che “Lo Steven Spielberg dell’animazione molecolare” anche in forza dei numerosi premi conseguiti nel corso della sua lunga ed insolita carriera. Poco celebrata al di fuori degli ambienti divulgativi eppure, non meno importante anche per la ricerca, vista la maniera in cui permette agli scienziati di visualizzare la risultanza somatica delle proprie ipotesi, potendo così contare su una valutazione istintiva di quanto queste ultime siano probabili, oppure soltanto un passo falso verso la risoluzione del più grande mistero alla base della nostra stessa esistenza. Il risultato è un susseguirsi fantastico di visioni al limite del surreale…
particelle
La felce che fiorisce dove il fulmine colpisce
Sotto ogni singolo punto di vista concepibile, manca al mondo una ragione valida per mettersi a smontare i forni a microonde. Poiché all’interno c’è un condensatore, il cui potere è accumulare e trattenere l’energia. Per poi scatenarla tutta assieme, anche se l’hai scollegato dalla rete elettrica, con una forza sufficiente a fare fuori una persona o due, anche a molte ore di distanza. Soltanto un pazzo, dunque, potrebbe pensare d’imitare un tale esperimento. Ma negli occhi vividi dello scienziato e dell’artista, non c’è nessuna cosa non bella. Il folto pelo della natura, le sue orecchie a punta con gli artigli da gatto e la coda sinuosa e serpeggiante, che si appoggia alle caviglie delle cause pretendendo la carezza dell’analisi efficace. Ed è proprio in questo miagolante gatto, nel cui verso c’è la pioggia o il rombo delle cascate, il fruscio dei raggi cosmici e la musica del cosmo dei pianeti, che alberga l’armonia perfettamente intatta di un fondamentale senso d’equilibrio. Persino quando sfodera gli artigli, per punire l’ospite che si è preso troppa confidenza nella stanza del padrone dei divertimenti. È un po’ questo il senso ultimo dei temporali, a ben pensarci, per cui accade che talvolta l’elettricità si accumuli all’interno di una nube. Fino al raggiungimento di un potenziale talmente elevato, da doversi scaricare verso il singolo oggetto più elevato nel bel mezzo oppure ai margini di una radura. E fu così che qualche volta, un tale oggetto era costituito dalle spalle o dalla testa di una singola persona. “Illuminato da Zeus” lo chiamavano un tempo “Fortunato per definizione.” per poi aggiungere “La sua sopravvivenza è un ricettacolo ricolmo di presagi.” Il che naturalmente, non aveva alcun riscontro tra i fenomeni osservabili coi nostri stessi occhi. Nossignore, più che altro, essere colpiti è un’esperienza sconvolgente. Che scombussola i tessuti, infrange le pareti cellulari, scuote le ossa e aumenta la temperatura, fino ad ustionare gli organi causando un mare di dolore. Ma c’è una chiave di lettura, come dicevamo, che riesce a ritrovare addirittura in questo, il nesso e la ragione. E fu così notato, fin dai tempi antichi, che le vittime dei fulmini talvolta riportavano disegni sopra il corpo. Simili ad un tatuaggio rituale, di talune culture d’isole remote, concepito per raffigurare gli elementi o le creature, al fine di carpirne la potenza innata in qualche impercettibile maniera. O per essere specifici, figure vegetali e ramificazioni.
Perciò sapete che vi dico? Si può fare, in teoria. Col che intendo che vi sono alcune classi di persone, particolarmente immuni la senso universale della ragionevolezza, che quel forno orribilmente pericoloso l’hanno smontato. E con un filo avvolto nel nastro isolante, ne hanno veicolato il potenziale su di un pezzo di legno, materiale in nessun modo conduttivo, con una potenza tale da renderlo, alla fine, luminoso. Col che non intendo che abbia preso fuoco (benché talvolta, succeda proprio quello) ma che l’energia termica che si accompagna all’elettricità ha iniziato a diffondersi su questa superficie, in maniera all’apparenza totalmente casuale. Rispettando unicamente due leggi: seguire la strada di minore resistenza, ed evitare lo spazio già occupato da cariche che abbiano la stessa polarità. Il che, in soldoni, ha portato al formarsi di un debole alone attorno al punto di contatto, dalla carica del tutto negativa, da cui s’irradiano una serie di rami serpeggianti, tracciati dal passaggio della fuga di più intensi, e rapidi, conglomerati di protoni. Che è poi la stessa cosa che succede sulla pelle di chi incontra il fulmine celeste senza una colpa, e ricevendo il tocco del suo marchio, riporta il danno delle sfortunate circostanze. Ma guardiamo la questione da principio, ovvero con lo sguardo di colui che l’ha scoperta, finendo poi per dargli il proprio nome: tedesco, scienziato, saggista, anglofilo, Georg Christoph Lichtenberg, insegnante di fisica all’università di Göttingen a partire dal 1769. Famoso per la sua idea, all’epoca del tutto nuovo, di far accompagnare le sue spiegazioni a vari tipi d’esperimenti e dimostrazioni pratiche, tramite l’impiego di strumenti scientifici di vario tipo. Tra cui ce n’era uno chiamato l’elettroforo, che egli amava particolarmente, costituito da un disco metallico sospeso del diametro di circa due metri, attaccato a una carrucola. Sotto il quale, trovava posto un’altro in materiale dielettrico (isolante) come cera o resina che qualcuno, presumibilmente uno studente, veniva chiamato a strofinare con un panno generando l’elettricità statica. Al che lui, manovrando il meccanismo, avvicinava il piatto sovrastante per permettergli di caricarsi. E poi, toccandolo semplicemente con un dito, faceva continuare in se la corsa dei protoni. Intrappolando nel metallo una carica di certo non letale, ma bastante per effettuare una singola, essenziale prova…
La realtà ridefinita dentro a un fiume di neutrini
C’è un che di profondamente socratico nella scienza della Fisica Quantistica, che nelle alterne circostanze sembra rivolgersi all’uomo non tanto per chiarire i suoi dubbi, quanto per aggiungerne degli altri, sempre più pressanti ed irraggiungibili. Perché “Sapere di non sapere” è un’importante base per elaborare dei dati di natura totalmente nuova. Ma talvolta, è innegabile, sarebbe bello poter mettere il coperchio sulla pentola della realtà. È una questione complessa. Dalle molte sfaccettature. Non è facile trovare un modo di disfare l’universo, ovvero guardare tra le fibre della sua tela, ed acquisire la realtà pulviscolare di quello che costituisce il nostro suolo, l’aria che respiriamo, il colore rosso e il canto degli uccelli mattutini. Con la progressiva acquisizione del metodo scientifico, perfezionato attraverso i secoli da Leonardo, quindi Galileo ed Immanuel Kant (ma ce ne furono parecchi altro) si andò progressivamente incontro alla questione di cosa determinasse, in effetti, l’incredibile continuità della materia, che in ogni frangente o circostanza era apparentemente instradata verso un certo tipo di reazioni, comportamenti e prevedibili trasformazioni. Il concetto di “atomo”, sia chiaro, non è certo immaginato per la prima volta nel Rinascimento, né tanto meno verso l’epoca moderna. Già alcuni filosofi greci ed indiani, nel mondo antico, avevano elaborato la teoria che al mondo permanesse un qualche cosa d’indivisibile e di sacro, che permeava ogni risvolto dell’onnipresente materia. Ma uno studio effettivo e sperimentale della questione non sarebbe stato reso pubblico fino al 1805, con la pubblicazione delle teorie del fisico inglese John Dalton, che per primo dimostrò come la scienza nuova della chimica consistesse, fondamentalmente, del far incontrare artificialmente tali mattoncini, generando dei composti nuovi. Finché nel 1939, lavorando su progetti totalmente indipendenti, Lise Meitner e Hans Bethe dimostrarono rispettivamente la fissione e la fusione dell’atomo, provando inconfutabilmente che qualcosa di più piccolo poteva esistere. Il cui effetto sulla nostra vita quotidiana poteva essere nient’altro che utilissimo (in campo energetico) o devastante (come arma di guerra). Ed è a questo, in definitiva, che serve la scienza pura della fisica teorica. Non tanto per risolvere questioni immediate, come la medicina o il calcolo analitico, quanto avvicinarsi il più possibile a un qualcosa di sfuggente. Per giungere infine, una volta ogni duecento, ad una suprema rivelazione, in grado di creare e distruggere allo stesso tempo. È una colossale responsabilità. Che sta ricadendo in questi ultimi mesi proprio lì, sul celebre laboratorio Fermilab fuori Chicago, nonché la sua speciale controparte in quest’epica missione, il “rivelatore distante” del NOvA, presso Ash River, in Minnesota. Una distanza complessiva di 810 Km, che normalmente renderebbe poco pratico l’interscambio tra il personale delle due installazioni, ma che in questo caso diventa invece una questione basilare: ciò perché l’oggetto dello studio collettivo, che ci crediate o meno, percorre l’intera distanza nel giro di 2,7 millisecondi, passando per di più attraverso il duro suolo degli Stati Uniti. Proprio così! Non c’è nessun tunnel sotterraneo, condotto, tubazione (anche perché la costruzione di simili implementi, è probabile, avrebbe avuto un costo largamente fuori budget) per il semplice fatto che assolutamente nulla, a questo mondo, ha la capacità di rallentare un neutrino.
Da quando ho iniziato a scrivere, dozzine, centinaia di queste particelle hanno attraversato l’aria tra me e il monitor, lasciandosi dietro una scia invisibile ma significativa. Ed altrettante hanno attraversato il mio corpo, come anche il vostro di lettori, senza per fortuna alcun effetto sulle cellule dell’organismo. Ma questo era sostanzialmente inevitabile: gli esseri umani, come tutti gli altri del pianeta Terra, si sono evoluti per trarre la propria forza, in via diretta o indiretta, da una stella “fissa” come il Sole. Che da miliardi di secoli bombarda il cielo di luce, di calore e di un sacco d’altre cose che prendiamo in considerazione assai più raramente. L’esistenza del neutrino fu dedotta per la prima volta da Wolfgang Pauli nel 1930, per spiegare l’effetto del decadimento delle particelle radioattive. Ma la sua esistenza sarebbe stata provata solamente nel 1956, grazie agli esperimenti di Cowan e Reines condotti all’interno del reattore a fissione di Savannah River. Essi avevano, sostanzialmente, trovato un modo per conoscere l’inconoscibile, toccare l’intangibile. Attraverso la risorsa scientifica, fondamentale e duratura, di un rivelatore. L’idea di base è la seguente: siamo qui riuniti, quest’oggi, a parlare di un qualcosa di così veloce e piccolo, nonché “privo di carica” (non per niente è un neutr-ino) da essere impossibile da catturare. Eppure, si sa, una tale cosa non può fare a meno di transitare. Un qualche effetto sulla materia circostante, avrà dovuto pur averlo, giusto? Si. E per dimostrarlo, c’era un solo modo: costruire un grande serbatoio di liquido altamente reattivo, che venendo attraversato dalle particelle, liberasse un insignificante ed ultra-momentaneo lampo di luce, a sua volta raccolto e registrato da specifici fotorecettori ad alte prestazioni. Così fu provata l’esistenza del neutrino. E con tale metodo, in una vasta serie di esperimenti successivi concentrati all’incirca tra il 1960 e ’90, né fu pure confermata l’emissione da parte della nostra stella, che come dicevamo poco sopra, non è mai stata parca di un simile rigurgito subatomico sugli abitanti inconsapevoli di questa Terra. Ed è a partir da questo, come da prassi attesa, che la fisica quantistica ci mise lo zampino. Connotando la nuova certezza con l’ennesimo, pressante dubbio, ovvero: perché, se il calcolo matematico ci diceva che il flusso stellare doveva avere una certa frequenza ed intensità, i neutrini rivelati erano invece in quantità notevolmente inferiore? CHI stava rubando tutti i nostri preziosissimi neutrini?