L’ultima esplosione metallurgica per la catartica creazione di una sfera

Avanti, con cautela, aprite i rubinetti; ora giù con il tritolo, mentre il tempo corre rapido ad esaurimento. A fronte di un’attenta calibrazione dei rapporti di potenza. Ed ora che si alza il muro divisorio, per proteggersi da eventuali frammenti, l’oggetto simile alla rappresentazione informaticamente desueta di un poligono sferoidale. Quindi mentre ogni uomo e donna tra i presenti sembrano per qualche istante trattenere il fiato, allo scadere del cronometro, si ode un tuono sordo provenire dall’interno. Ed uno sbuffo come quello di un cetaceo emerge dalla cima dell’oggetto in qualche modo differente. Ma è soltanto dopo qualche istante, che la realtà inizia a rivelarsi nella cognizione dei presenti: inimitabile ed inconfondibile sul palcoscenico della storia, ESSA è stata plasmata.
Mettete quindi un fabbro del mondo antecedente all’epoca moderna a diretto contatto con un sommergibile o un aeroplano, e difficilmente questi potrà riuscire a comprendere l’intricatezza tecnologica dei rispettivi motori, il funzionamento dei sistemi e lo scopo di simili oggetti spropositati. Ma ciò che riuscirà a colpirne l’immaginazione, senza nessun tipo d’esitazione, sarà l’eccezionale lavorazione metallurgica delle rispettive strutture: cilindri dalle teste smussate, appuntite, affusolate. Lisci come il dorso di una tartaruga e al tempo stesso, eccezionalmente solidi, come il cimiero di un’armatura appena uscito dalla forgia. “Di certo, per riuscire a realizzare un’opera tanto perfetta” esclamerebbe costui: “L’uomo uscito dalla macchina del tempo deve aver impiegato un tempo lungo usando macchinari dall’eccezionale grado di complessità operativa.” Laddove la realtà dei fatti è che, sebbene frutto di un livello tecnologico indubbiamente avanzato, tali oggetti sono spesso la diretta risultanza di un processo rapido e brutale. Per certi versi, addirittura ingenuo, inteso come ingegno funzionale a un obiettivo inge-“nioso”. Far esplodere il progetto dall’interno. In una perversione apparente dell’intento creativo che prende il nome di idroformatura, cionondimeno efficiente come ampiamente dimostrato attraverso i decenni precedentemente trascorsi; nell’accezione qui dimostrata nel corso di un breve video dedicato alla creazione di una sfera di Horton (il tipico serbatoio per i gas a pressione) del tutto paragonabile a quella che permise di creare i titani tecnologici dell’epoca della guerra fredda. Sarebbe a questo punto tuttavia utile applicare l’utile distinguo della terminologia appropriata, secondo cui siamo di fronte non tanto ad un processo di hydroforming di tipo convenzionale, a meno di voler utilizzare un’antonomasia, quanto, piuttosto la sua versione per così dire evoluta, e certamente ancor più spettacolare, dell’hydrobulging, capace di fare a meno dell’impiego di un ponderoso stampo al fine di ottenere la forma desiderata. Che in questo particolare caso dovrà risultare essere SEMPRE quella di una sfera, per la superficie equidistante nei confronti di un singolo punto al centro dell’interessante questione. Un fine, quest’ultimo, praticabile anche “a secco” in determinate circostanze, sfruttando una calibrazione particolarmente precisa della quantità di esplosivo (in genere si tratta di trinitrotoluene, alias TNT) contenuto all’interno. Benché molto più frequente, ed affidabile, risulti essere la formatura mediante riempimento preventivo della quasi-sfera con un pieno d’acqua immessa a pressione, secondo il principio dell’amplificazione della pressione. Un approccio che trasporta la nostra trattazione a molte miglia di distanza, fino alle profondità remote dell’oscuro oceano terrestre…

Leggi tutto

Tremila metri sotto il Sudafrica, alla ricerca dell’ultimo grammo d’oro

L’oro: il metallo più prezioso nell’immaginario collettivo, sebbene ve ne siano di più rari, utili o funzionali a far fruttare un investimento. Lo sanno fin troppo bene, loro. Ma c’è un fascino immutabile, in ciò che può essere facilmente plasmato eppure non subisce gli effetti del tempo, non viene corroso, né subisce variazioni quantitative durante il riutilizzo successivamente alla fusione. A patto, s’intende, di potersi fidare di colui che lo lavora. Un tesoro assai più raro di quanto saremmo comunemente indotti a pensare, soprattutto rispetto a materiali facilmente estraibili come i diamanti, laddove tale oggetto del desiderio si trova in natura normalmente associato ai filoni di quarzo, tra le rocce ignee e metamorfiche che furono infiltrate dall’acqua di antichi oceani ormai rimasti privi di un nome. E in un mondo in cui per secoli e millenni plurime generazioni di minatori hanno passato una vita con in mano gli strumenti del mestiere, alla ricerca di un difficile sentiero verso l’arricchimento personale, sembrerà talvolta che ogni ultima possibilità sia stata sfruttata, qualsiasi vena a cui l’uomo potesse accedere dietro un investimento di risorse ragionevole sia andata incontro all’esaurimento. Benché l’opera dei nostri progenitori, di suo conto, non sia priva di effettivi lasciti, oltre a quelli intangibili che pesano sulla cultura e l’economia; così che dov’essi avevano scavato, i loro figli hanno continuato a farlo, e così i nipoti. Fino alla creazione, tra gli altri, di un caso estremo come i West Wits, il campo minerario situato a poca distanza dalla città sudafricana di Johannesburg dove hanno luogo alcune delle miniere più profonde al mondo.
Con nomi come Mponeng (“Guardami”) e TauTona (“Il Grande Leone”) nelle lingue delle antiche popolazioni locali, a cui tali depositi erano già noti, sebbene fossero in origine decisamente più accessibili da parte di opere estrattive a conduzione poco più che familiare. Prima che qui giungessero i macchinari e le maestranze della Ashanti Corporation, fondata in Ghana nel 1897 e destinata a diventare nel giro di pochi anni una delle compagnie estrattive più influenti e ricche al mondo, fino alla fusione, destinata a compiersi oltre un secolo dopo, con la AngloGold per una resa annuale misurabile in milioni di miliardi, visto come basti effettivamente estrarre 0,35 once da un’intera tonnellata di roccia, per poter riuscire a generare un profitto. Non c’è molto da sorprendersi, dunque, se lo scavo in questi luoghi fu condotto senza nessun tipo di risparmio, verso l’ottenimento di quelle che possiamo oggi definire, senza dubbio alcuno, le voragini più profonde mai scavate dall’uomo. Fatta eccezione per l’esperimento del foro di Kula o altri tentativi di trivellazione per scopi scientifici, comunque tanto stretti da non permettere la discesa da parte degli umani. Mentre le miniere sudafricane, di contro, riescono ad ospitare delle vere e proprie città dove non batte la luce del sole, con i loro governanti, mezzi di trasporto e regole completamente diverse da quelle della superficie . É perciò un mondo inaccessibile nonché crudele, quello descritto nei brevi e occasionali articoli scritti sull’argomento sulle testate internazionali, che parlano di tunnel da temperature superiori ai 60 gradi che richiedono l’impiego costante di speciali impianti di raffreddamento e i cosiddetti “minatori fantasma”, uomini disperati, spesso armati fino ai denti con fucili a ripetizione e granate incendiarie fatte in casa, che si nascondono in sezioni ormai chiuse della miniera, spesso con il beneplacito o l’impotenza dei lavoranti legittimi, per accumulare piccole ma significative quantità del desiderabile pegno di opulenza creato dalla natura. Al fine di condurlo a distanza di settimane o mesi, a patto che riescano a sopravvivere ai gas venefici e il costante rischio d’incendi, nelle spietate grinfie dei loro mandanti e padroni. Mentre l’opera di scavo inarrestabile continua, all’inseguimento di un tesoro spesso misurabile in pochi centimetri di giacimento, la coda ormai distante delle antiche sale di una mitica Eldorado africana…

Leggi tutto

L’improbabile realtà di un vetro radioattivo

Nella sua forma basilare il vetro, materiale solido che tuttavia presenta le caratteristiche di un liquido, è il prodotto della fusione e successiva cristallizzazione di sabbia, silicio o altri silicati, occasionalmente fatti galleggiare sopra un letto di stagno per garantirne la levigatezza opportuna. Ciò consente di disporre, nella maggior parte delle situazioni, di un qualcosa che risulti essere del tutto trasparente, soluzione idonea per finestre, specchi o altri simili implementi. Ma che dire di chi cerchi, nelle proprie circostanze operative, un oggetto finale che risulti essere dotato di un colore? Suppellettile o perfetto soprammobile, differenziato dai prodotti circostanti per la sua capacità di assorbire, almeno in parte, la luce… Un risultato che può essere raggiunto in un singolo modo: l’uso pratico, ed attentamente calibrato, di una certa quantità di metallo. Polvere alla polvere, di borosilicati, ed ossido potente da inserire nella mescola della giornata; tutto questo in base a una ricetta che deriva dai recessi del Mondo Antico. E in effetti tra i ritrovamenti archeologici effettuati a Posillipo, coerenti all’eruzione del Vesuvio del 79 d.C, sono stati ritrovati dei mosaici composti parzialmente in vetro, la cui colorazione risultava essere di un pallido verde oliva. La cui analisi più approfondita avrebbe dato un valido riscontro, di quanto mai, nessuno, avrebbe teso a sospettare: il contenuto, lieve ma presente, di una polvere d’uranio. Materiale radioattivo per eccellenza!
Di sicuro non il più pericoloso. E del resto fino alla sua attivazione, durante i processi che condussero alla produzione moderna dell’energia nucleare, sufficientemente inerte da essere maneggiato senza eccessivi rischi per la salute. Come sarebbe ritornato in voga d’altra parte quasi due millenni dopo, con la produzione americana di quello che sarebbe stato chiamato coerentemente jadeite glass o “vetro di vaselina”, dall’appellativo commerciale di un petrolato venduto al tempo dalla stessa tonalità cromatica, o con senno di poi storiografico direttamente vetro [dell’epoca] della grande depressione. Caratterizzato da una proprietà piuttosto interessante: la propensione ad accendersi di luce riflessa e brillare pressoché istantaneamente, con una fosforescenza naturale particolarmente sensibile alla luce ultravioletta. Vasi, candelabri, lampadari… Ma anche piatti e bicchieri, dimostrando la pressoché totale indifferenza al potenziale insalubre di quanto, dopo tutto, veniva ancora considerato un materiale come tanti altri. Successivamente alla seconda guerra mondiale ed in particolare a seguito del progetto Manhattan per la creazione della prima bomba atomica, dunque, la situazione sarebbe radicalmente cambiata, cambiando dapprima la disponibilità e quindi la concezione collettiva di tale materiale, causando l’istantanea e totale sparizione di simili oggetti dal mercato della produzione corrente. Ragion per cui, sebbene dotati di un pregio di lavorazione trascurabile, tali testimonianze di uno strano passato vengono oggi mantenute in elevata considerazione dai collezionisti, disposti a pagare una ragionevole quantità di dollari per aggiungere un altro pezzo di simil-criptonite alla loro collezione di bric-à-brac.
Il tipico prodotto di vetro all’uranio, del resto, ne contiene una quantità non superiore al 10-15%, generalmente incapace di emettere radiazioni superiori a quelle già contenute dal corpo umano. Sebbene esistano delle eccezioni e ad ogni modo, lo stesso metodo impiegato per dare forma ad uno di questi oggetti risulti essere piuttosto impressionante e per quanto ci è dato di comprendere, potenzialmente pericoloso…

Leggi tutto

L’unica “mucca” che genera isotopi radioattivi a comando

L’aspetto tangibile di un bovino non comporta in genere l’utilizzo di un barattolo trasparente al fine di contenere l’intero animale, a meno che il defunto mammifero non sia recentemente passato per un forno crematorio fuoriuscendo dal quale, per quanto ci è permesso di capire, sarebbe alquanto infruttuoso sottoporlo a un comune processo di mungitura. Ma neanche questo specifico isotopo del torio, a voler essere sinceri, uno dei più comuni elementi radioattivi nonché il principale carburante utilizzato nei moderni generatori nucleari, si presenta il più delle volte come un fluido indistinguibile dall’acqua, tanto risulta liquido e trasparente. Certo: qui siamo nel regno dell’avveniristico e del possibile, ovvero tra le alte mura dell’Oak Ridge Laboratory dell’Università del Tennessee. Un luogo che sta agli scienziati che s’interessano di energia atomica, come le riconoscibili rocce del parco di Vasquez in California per i cinefili, comparse in innumerevoli pellicole di fantascienza a partire dal celebre episodio di Star Trek. E c’è una sorta di paradossale equilibrio, nel trovarci proprio qui, dove venne condotto fino alle sue più terribili conseguenze il progetto Manhattan per la costruzione della prima bomba atomica, ad osservare un processo il cui scopo è diametralmente opposto: prolungare, per quanto possibile, la vita delle persone.
In un potenziale Purgatorio di radiazioni che tuttavia conduce al Paradiso, all’interno del quale il nostro traghettatore, ancora una volta, è niente meno che il Prof. Poliakoff, lo spettinato chimico dell’Università di Nottingham che gestisce l’incredibile serie divulgativa The Periodic Table of Videos, uno degli angoli più scientificamente interessanti di tutta YouTube. E si capisce ben presto che il suo fanciullesco entusiasmo, stavolta, appare quanto mai giustificato: la “mucca” del torio è dopo tutto, un processo che potremmo arrivare a definire quasi miracoloso nella cura che potrebbe un giorno offrirci nei confronti della più grave e incurabile afflizione del mondo moderno: il cancro che attacca i tessuti umani. Il sistema ruota attorno, per entrare nel vivo della questione, a una terapia sperimentale sottoposta a trial clinici con risultati notevoli negli ultimi tre anni, che consiste nell’effettuare la radioterapia con un materiale particolarmente raro e in conseguenza di questo, prezioso: l’actinium-225, presente in natura nella quantità di circa 0,2 milligrammi per ogni tonnellata del già costoso uranio. Questo specifico isotopo, che prende il nome dal termine greco che vuol dire “splendore” (ακτίς) proprio perché per tutto il corso della sua mezza-vita di appena 10 giorni emette un tenue lucore azzurro, possiede infatti la capacità di emettere il tipo di particelle radioattive classificate con la lettera alfa, nei fatti composte da due protoni e altrettanti neutroni. Per un peso complessivo in grado di renderle assai meno volatili e nel contempo, molto più efficaci nell’attaccare ogni tipo di cellula, incluse quelle colpite dalla mutazione potenzialmente letale del cancro. Ecco dunque per sommi capi, come funziona la cura: si prende un particolare anticorpo o una proteina, creati in laboratorio per attaccare lo specifico tipo di malattia del paziente, quindi lo si abbina al potente actinium, che per i processi organici del corpo viene portato proprio nel punto dove se ne ha maggiormente bisogno. Quindi nel corso dei pochi giorni attraverso cui quest’ultimo si dissolve, il cancro viene letteralmente bombardato dalle particelle alfa e si spera, in conseguenza di questo, costretto ad arretrare…Se non addirittura debellato.
Ma la domanda effettivamente da porsi è: in quale maniera è stato possibile sottoporre circa 100 pazienti l’anno a questo complessa terapia almeno a partire dal 2016, se l’actinium-225 continua ad essere una delle sostanze più rare della Terra? La risposta, come potrete facilmente immaginare giunti a questo punto, è nella mungitura condotta diligentemente ogni giorno (o quasi) da alcuni dei più precisi tecnici del laboratorio di Oak Ridge…

Leggi tutto