La pericolosa sfera gigante dell’Università del Maryland

Daniel P. Lathrop è l’uomo che, da un periodo di quasi 10 anni, compare di tanto in tanto sulle riviste e pubblicazioni scientifiche per parlare dello stesso identico esperimento. Non per confermare che l’operazione sia riuscita, oppure l’esatto contrario: in effetti, la sfera di sodio fuso del laboratorio delle dinamiche non-lineari resta sospesa in una sorta di limbo, per cui POTREBBE ipoteticamente generare le forze che tutti si aspettano da lei. Oppure in effetti, non giungere mai e poi mai a farlo. Eppure la stampa non perde interesse, ritornando periodicamente a descrivere l’oggetto, l’uomo e ciò che ha intenzione di fare. Le ragioni sono molteplici, ma girano tutte attorno alla stesso argomento: il fatto che l’oggetto in questione sia una sfera del diametro di tre metri, ricolma del metallo liquido più instabile noto all’uomo, lanciata periodicamente grazie a un motore elettrico da 350 cavalli ad un ritmo di 4 rotazioni al secondo. Dentro di essa, giacciono 13 tonnellate di sodio metallico fuso, l’elemento fisico con il numero atomico 11 a contatto del quale potrebbe bastare una singola goccia d’acqua, per generare un’esplosione catastrofica sufficiente a spazzare via l’intero hangar in cui viene custodito l’esperimento, assieme al suo inventore, i macchinari preposti e chiunque dovesse passare per caso di lì. Non a caso, l’impianto antincendio dell’edificio è stato spento, venendo sostituito con uno speciale sistema ad-hoc capace di sganciare a comando un’intera bombola di nitrogeno liquido, sostanza sufficientemente fredda da bloccare la reazione chimica prima che possa degenerare. A patto, ovviamente, che qualcuno sia abbastanza svelto nel farvi ricorso, in caso d’improvvisa necessità.
È il tipico paradigma della scienza applicata, che talvolta si occupa di meccanismi di precisione, questioni microscopiche prive d’implicazioni problematiche. Ed altre, invece, diventa la disciplina col piede di porco e il potenziale esplosivo, gli sferraglianti ingranaggi di un ambito bramoso che non si ferma dinnanzi a nulla, semplicemente perché non può farlo. Almeno, se vuole scoprire la verità. La serie di quesiti a cui si propone di rispondere un simile esperimento d’altra parte, giunto alla fase critica attorno al 2011 dopo anni di prove e prototipi su scala decisamente più ridotta, è uno di quegli aspetti dell’esistenza che pur essendo collettivamente ignorati, finiranno prima o poi per influenzare ciascuno di noi: che cosa genera il campo magnetico terrestre? Cos’è che causa le sue continue variazioni? E quando accadrà di nuovo, ancora una volta, che i poli del pianeta vadano incontro a una completa inversione, modificando il funzionamento di tutte le bussole del globo? Potrebbe sembrare una questione faceta, finché non si considera come sia proprio la nostra magnetosfera, da tempo immemore, a proteggerci dalle possenti emissioni elettromagnetiche dell’astro solare, capaci potenzialmente di rendere inutilizzabile un buon 95% di tutta l’elettronica a disposizione della razza umana. Ora noi sappiamo, grazie all’inferenza e la legge del rasoio di Occam, che c’è un solo luogo in cui tale campo di forza protettivo può trovare le sue origini: quello strato sepolto che prende il nome di nucleo esterno, dalla temperatura comparativamente bassissima di “appena” 3.000 gradi in alcune regioni, contro i 5.700 del letterale centro della Terra e i 4.000 degli strati inferiori del mantello, ove la fusione è impossibile, a causa dell’eccezionale pressione dovuta alla gravità del pianeta stesso. Mentre c’è questa letterale zona grigia, composta in massima parte di metalli, per cui la forza centrifuga è latrice di movimento, ragione per cui ferro e nickel, più densi, vanno a disporsi ai confini della linea terminale, mentre altre sostanze più morbide, come il sodio, procedono sicuri verso la superficie, andando a perdersi dentro le intercapedini delle infinite rocce soprastanti. Capite di cosa stiamo parlando? La fisica ci insegna che quando un rotore composto almeno in parte di metallo magnetico viene immerso in un campo pre-esistente, il suo movimento non può fare a meno di amplificare una tale forza in maniera proporzionale. Il che su scala cosmica prende il nome di teoria della dinamo terrestre, secondo quanto delineato per la prima volta dall’astronomo inglese William Gilbert, nel suo famoso libro De Magnete (1600) il testo, incidentalmente, in cui viene usato per la prima volta il termine electricus, da cui il moderno concetto d’elettricità. Ma c’è una netta differenza tra il conoscere qualcosa in maniera teorica, e riuscire invece a dimostrarlo al di là di ogni ragionevole dubbio, grazie all’analisi di un preciso modello di quell’universo a noi letteralmente sconosciuto, che giace sotto i piedi a profondità molte volte superiori a quelle raggiungibili da qualsiasi trivella, anche nell’immediato futuro…

Leggi ancora

L’acutezza di una lama forgiata con la carta stagnola

Quando si osserva uno YouTuber che realizza un video dimostrativo pratico in cucina, generalmente, ci si aspetta che il suddetto materiale si riferisca in qualche maniera alla sfera della gastronomia, o conduca comunque a un qualcosa di commestibile in caso di estrema necessità. E in effetti Kiwami Japan, misterioso autore che probabilmente diffonde il frutto del proprio agire anche sul portale del suo paese Nico Nico Douga, ha in precedenza lavorato con la pasta, la cioccolata nonché il particolare pesce secco noto come “cibo più duro del mondo”, katsuobushi o bonito di tonnetto striato. Contrariamente a quanto ci si potrebbe aspettare, tuttavia, piuttosto che puntare a una varietà di ricette, il suo obiettivo è sempre stato il medesimo, ovvero la creazione di un qualcosa di periferico, purché importante ai fini della buona tavola: un coltello di ottima qualità. È del resto particolarmente sentito, nella cultura del Sol Levante, il ruolo preminente riservato al più nobile degli strumenti per preparare il cibo, spesso tramandato di genitore in figlio e così via talmente risulta essere elevata la sua qualità costruttiva, ed eccellente il metallo di cui è stato costruito. Ma le usanze a tavola definiscono le aspettative delle persone. E nella maggior parte d’Asia, di contro non è tipico che a tavola si disponga di null’altro che un paio di bacchette, una ciotola ed al massimo, in determinati casi, un cucchiaio. Ciò determina, in determinati casi, l’esistenza di un problema: che dovrebbe fare la persona per cui, momentaneamente, è impossibile acquistare un coltello presso la bottega del fabbricante della meraviglia in hagane, l’acciaio tradizionale ripiegato su se stesso come la pasta sfoglia dei samurai? Perché in definitiva, tutto quanto può tagliare un pomodoro. Basta volerlo con sufficiente convinzione, disponendo degli strumenti giusti per realizzare l’idea.
Nell’ultimo video dell’eclettico autore, pubblicato giusto ieri, tuttavia, è palese che egli riesca a realizzare il suo obiettivo migliore. Non più perseguire la creazione di un qualcosa di utile le prossime due o tre volte, prima di finirgli nello stomaco tra la diffusa ilarità generale, bensì un effettivo attrezzo che riesce a convincere quanto meno lo sguardo, riuscendo a svolgere adeguatamente lo scopo che lasciava intendere la sua forma. L’idea è del resto semplice, ma geniale, e gli permette di sfruttare una sostanza appartenente alla categoria ideale dei metalli. Quello proveniente, per l’appunto, da un rotolo di carta di alluminio, generalmente usata per conservare il cibo o cuocerlo in maniera più netta ed uniforme. Fin troppo spesso ci dimentichiamo dei complicati processi industriali che si trovano alla base degli oggetti di uso comune, e con esse delle straordinarie doti di un metallo tanto duttile, un tempo straodinariamente difficile da estrarre ed isolare. Finché il chimico francese Henri Étienne Sainte-Claire Deville, inventando la riduzione diretta tramite processo elettrolitico, non lo rese tanto comune da permetterne l’impiego in aeronautica, prodotti di consumo e addirittura, ogni volta se ne percepisca la necessità, applicazioni usa e getta in cucina. Ma forse neppure lui aveva mai pensato che si potesse arrivare a questo… Senza lasciare spazio neanche ad una breve introduzione, il creativo misterioso inizia subito il suo primo tentativo, srotolando il proprio rotolo e provando, se possibile, a plasmarlo inizialmente con le mani. Osservando il risultato non propriamente ideale, ben presto si rende conto che esiste un metodo migliore. Allora prende un secondo rotolo, e con il manico di un martello espelle il tubo di cartone all’interno. Quindi dispone l’oggetto sopra una  morsa-incudine, ed inizia ad appiattirlo con una serie di colpi attentamente mirati. A fine di ammorbidire e plasmare al meglio la sua creazione, a metà dell’opera la pone brevemente sui fornelli, facendo affidamento sulla temperatura di fusione piuttosto bassa del materiale in questione, prima di passare finalmente al momento cruciale del taglio della billetta (lingotto da forgia).

Leggi ancora

Pneumatici marziani che provengono dal Medioevo

Chi ha detto che le antiche arti, con il trascorrere degli anni, perdano necessariamente di rilevanza… Così che nel futuro ipotizzato da scrittori e registi, il più delle volte, la popolazione umana della galassia è caratterizzata in maniera piuttosto incolore, con una sola soluzione tecnica per ciascuna necessità: un tipo di astronave, un tipo di veicolo, un tipo di tuta spaziale. Laddove l’esperienza ci insegna che la Storia, come forza generativa, induce una forte tendenza a molteplici gradi d’innovazione, offerti proprio sulla base di quanto si sia disposti a tornare indietro sull’asse della creatività. C’è stata un epoca in cui il soldato, prima di andare in battaglia, indossava una maglia intessuta di anelli di ferro, interconnessi come l’ordito di una tela e concepiti per deviare, almeno in parte, il colpo di spade o mazze impugnate dal suo nemico. L’avreste mai detto che un simile approccio alla protezione fisica, nella futura epoca spaziale, stesse per tornare tremendamente attuale? Con l’aggiunta del più valido ausilio: un metallo che riprende sempre la sua forma originaria, grazie alla fortunata sinergia tra due menti acute che casualmente, passavano di lì…
Nell’alba rossastra del quarto pianeta, una polvere leggera trascinata dal vento. Bagliori che si riflettono, sull’orizzonte, da un singolo punto in movimento. Non c’è vita, né acqua, né ghiaccio. La pianura è una distesa di sabbia e pietre appuntite. L’unica forma distinta, in questo mare di elementi inerti, è fatta di titanio, tellurio e tungsteno. Con un’ampia dose di alluminio, per costituire le ruote. È il rover Curiosity, inviato quaggiù nel 2011, e che da allora prosegue la sua missione senza un termine definito. Questo perché, per la prima volta, piuttosto che essere alimentato con carburante e pannelli solari, contiene una piccola dose d’uranio, sufficiente a farlo funzionare ancora per molti, molti anni a venire. A patto che non intervengano… Imprevisti. Nell’aria rarefatta di Marte, non sono molti i fattori che possono sottoporlo a danneggiamento. Non c’è la pioggia e neppure i temporali. Le famose tempeste di sabbia che ricoprono un intero emisfero planetario sono in realtà meno problematiche, come intensità del vento, di una giornata primaverile nel Kansas o in Oklahoma. L’unico modo in cui il prezioso veicolo automatico inviato così lontano può danneggiarsi, è facendo tutto da solo. Ma questo, ahimé, è inevitabile: poiché fra le varie caratteristiche del suolo marziano, c’è n’è una in particolare che domina sopra ogni altra: la sua spropositata ruvidità. Così che un dispositivo semovente del peso di 0,9 tonnellate, per esplorare l’ambiente come da programma, deve arrampicarsi quasi quotidianamente su pietre aguzze quanto la lama di un coltello, in grado di mettere a dura prova qualsiasi soluzione ingegneristica in uso sulla Terra. Questo, ovviamente, l’avevamo previsto. Così che gli pneumatici del rover, se così vogliamo ancora chiamarli, sono in realtà degli oggetti dall’alto grado di compattezza costruiti da un singolo blocco d’alluminio lavorato con macchine CNC, per ottenere un grado di solidità tale da poter resistere facilmente al tipo di prove a cui sono stati sottoposti durante la fase di progettazione sui severi percorsi del John H. Glenn Research Center della NASA, vicino Cleveland, Ohio. Ma c’è una cosa per cui, inevitabilmente, non erano stati testati: la loro integrità a fronte di mesi, persino anni di utilizzo. Poiché qualsiasi metallo, se sottoposto a continui stress meccanici per un periodo molto lungo, subisce delle sollecitazioni che lo portano a piegarsi, quindi spezzarsi letteralmente a metà. Così, la notizia trapelò nel 2013: le ruote di Curiosity stavano andando letteralmente a pezzi. Ben presto, le lunghe crepe si amplieranno, fino a causare il distaccamento di parti intere della loro struttura. Possibilmente, arrecando danni ai delicati meccanismi posizionati con misura di ridondanza sulla scocca del loro veicolo proprietario. Suscita quindi una certa sorpresa vedere, sul sito ufficiale dedicato alla prossima missione d’esplorazione telecomandata marziana con lancio previsto nel 2020, un rover dotato dello stesso identico sistema di mobilità. Non è tuttavia probabile che l’agenzia spaziale statunitense sia prossima a compiere lo stesso identico errore due volte di fila… Siamo semplicemente di fronte, in questo caso, ad un’immagine preliminare. Poiché potrebbe profilarsi all’orizzonte, finalmente, la prima implementazione di un sistema che fu proposto per la prima volta nel 2009, facendo vincere alla NASA l’anno successivo il prestigioso premio ingegneristico R&D 100 Award, assieme alla compagnia Goodyear che aveva fornito la propria assistenza. Stiamo parlando dello spring tire (dal termine spring steel, acciaio armonico) costituito da 800 molle interconnesse tra loro, in grado di ricordare molto da vicino la già citata cotta di maglia dell’epoca medievale, pur trovandosi caratterizzata da una struttura sostanzialmente diversa. Se tale approccio fosse stato davvero così meritorio, allora, viene da chiedersi perché non sia stato scelto per il rover Curiosity, prima di inviarlo lungo il difficile sentiero dell’esplorazione marziana. La risposta a tale quesito, in effetti, potrebbe sorprendere l’opinione comune…

Leggi ancora

Draghi e rane nel più antico metodo per rilevare i terremoti

Nell’ultimo periodo della dinastia Han, considerata una delle più rilevanti e trasformative nell’intera cronistoria della civiltà cinese, una lunga serie di disastri più o meno naturali si abbatté sull’Impero. Registrati minuziosamente dagli storici di corte, essi giunsero ad includere inondazioni, incendi, tempeste e straripamenti, mentre il popolo stesso rifiutava il sacro Mandato Celeste del più potente tra gli uomini, instaurando regimi paralleli e sempre più gravi ribellioni. E mentre il popolo soffriva, facendo eco alle loro richieste d’aiuto, la terra scelse proprio quel momento per mettersi a tremare: dal momento in cui la versione riformata dell’impianto regnante fu spostata presso la nuova capitale di Luoyang nel 23 d.C, fino all’inizio del successivo periodo dei Tre Regni nel 220 d.C, si hanno notizie di almeno 33 gravi terremoti, alcuni dei quali sufficientemente forti da causare danni ingenti e deviare persino il corso dei fiumi. Un susseguirsi di eventi, questo, che difficilmente poteva mancare di suscitare l’interesse e lo studio da parte di alcune delle menti più insigni del panorama pseudo-scientifico di allora. Personalità come Zhang Heng, il rinomato inventore e polimata che era stato allontanato dalla corte nel 123 d.C. per ordine dello stesso imperatore An, suo precedente mecenate, a causa di alcune divergenze in materia della riforma dei calendari in corso di elaborazione, che nell’opinione del sapiente avrebbe causato delle discrepanze cronologiche difficili da compensare. Durante il regno immediatamente successivo di Shun, figlio di An, ritroviamo quindi costui con l’incarico di astronomo di stato, e una paga di appena 600 staia di riso, quello che avremmo potuto definire il minimo sindacale (se fossero esistiti i sindacati) per un rango attribuito dallo stesso sovrano. Così lui, letterato e poeta di fama, mentre coltivava le arti umanistiche non smise mai di elaborare concetti tecnici ed invenzioni che potrebbero permettere, a noi italiani, di paragonarlo ad una sorta di prototipico Leonardo da Vinci: un nuovo tipo di clessidra con la sabbia pressurizzata, il modello della sfera celeste fatto funzionare ad acqua e poi quella che sarebbe rimasta, senz’altro, la sua invenzione più celebre per i molti secoli a venire: una sorta di giara, secondo gli storici odierni di bronzo o altri metalli, decorata con otto figure di piccoli draghi e al di sotto, riproduzioni a dimensione reale di rane.
Per comprendere l’accoglienza che un simile oggetto avrebbe avuto alla sua epoca, occorre immaginare lo scenario dell’intera corte Han riunita, per accogliere i rapporti degli ufficiali periferici ed i loro rappresentanti, mentre ciascuno, a turno, si alzava per camminare tra i suoi colleghi seduti sul pavimento, e andare a prostrarsi dinnanzi allo scranno imperiale, i consiglieri e la figura dello stesso Shun. Sappiamo che era il 132 d.C. e ci è giunta notizia anche di come purtroppo, in un primo momento, il supremo regnante non accolse positivamente la nuova invenzione del matematico, un tempo tenuto in grande considerazione dal suo padre e predecessore. Il problema è che nel corso di queste due successive generazioni di regnanti, la voce popolare secondo cui era iniziata la spirale discendente della lunga serie degli Han si era fatta sempre più insistente, e secondo l’etica cinese di origini confuciane e taoiste, parlare di disastri contingenti era lo stesso che annunciare la pendente fine della dinastia. L’oggetto fu dunque subito accantonato, assieme agli altri tesori tenuti a corte, e secondo alcune versioni del racconto, addirittura il suo inventore imprigionato, affinché non diffondesse ai quattro venti il supposto demerito della corte imperiale. La principale testimonianza giunta fino a noi dell’intera vicenda, il libro sulla fine degli Han (scritto a posteriori nel V secolo da Fan Ye) racconta tuttavia che ad un certo punto nelle vaste sale del palazzo di Luoyang risuonò un tonfo metallico. E che quando il sovrano si recò a controllare, trovò la scena più strana: uno dei draghi del recipiente di Zhang Heng aveva aperto la bocca, e la sfera di bronzo che si trovava all’interno era caduta, finendo dritta tra le fauci spalancate della rana corrispondente. “Ma questo non dovrebbe significare che…” Mormorò tra se e se il non-così-saggio governante, quindi smise di dedicare il suo tempo prezioso all’idea. Trascorsi alcuni giorni, tuttavia, giunse un messaggero ad annunciare l’impossibile verità: un grave terremoto aveva scosso la regione di Longxi ad occidente, ovvero l’esatta direzione indicata dal drago che aveva compiuto il suo gesto. Così Zhang venne liberato e, da quel giorno, ebbe di nuovo accesso a uno stipendio commisurato alle sue competenze e capacità. Il segreto del suo sismoscopio (che non è un sismografo, in quanto incapace di registrare gli eventi sismici) venne tramandato più o meno intatto attraverso le Ere…

Leggi ancora

1 2 3 6